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Abstract—A multi-robot system has advantages in complex
tasks, where formation control is one of the most critical and
fundamental tasks. For small-sized, autonomous, and enduring
robots, realizing high energy and area efficiency is extremely
important. This paper presents an approach that combines
swarm intelligence and reinforcement learning to realize accurate
and reliable operations. An area-energy-efficient hardware archi-
tecture is proposed to perform formation control in a distributed
robotic system. The proposed system demonstrates substantially
lower cost and power consumption when compared with the state-
of-the-art designs.

I. INTRODUCTION

A multi-robot system is a collection of several robots
cooperating to accomplish complex tasks, such as pattern
formation, area exploration, and collaborative path planning.
Among these tasks, formation control is one of the most funda-
mental tasks in multi-robot systems. Several distributed robots
move toward the goal or perform tasks while maintaining a
swarm or a desired pattern.

One promising approach to realize reliable formation con-
trol is utilizing swarm intelligence. Swarm intelligence is
based on low-level individual intelligence, which can perform
high-level collective behavior. It has been used in the imple-
mentation of multi-robot systems as swarm robotics. In swarm
robotics, robots are usually decentralized and allowed to act as
individuals while interacting with others and solving problems
as a group. It is more efficient to build multiple simple robots
instead of building one robust but costly robot. Therefore,
swarm robotic systems are regarded as fault-tolerant and robust
multi-robot systems [1].

Inspired by the collective behavior of animal flocks, vari-
ous computational mathematical models and algorithms have
been developed. Boids model was proposed by Reynolds in
1986, which aims to simulate the flocking behavior in birds
and other animals [2]. The mathematical model had been
extended to apply different flock control mechanisms. Couzin
presented a self-organizing formation model and surveyed
the spatial dynamics of animal groups in three-dimensional
space [3]. However, the agent’s movement seems disorderly
and unexpected in the basic model, much like a realistic
flock in nature. Since security and safety are critical issues
in the area of industrial robotics and human-robot interaction,
robotic systems are supposed to accomplish tasks accurately.
Moreover, although the robot can efficiently compute the next
decision in real-time since the algorithm is determined in these

Fig. 1. Metric distance model

model-based methods, the overall performance heavily relies
on model architecture, and it is more vulnerable in a real-world
environment due to uncertainty [4].

On the other hand, learning-based methods allow agents
to learn and optimize their policies by interacting with a
dynamic environment. In recent years, reinforcement learning
has attracted a lot of attention. It is commonly used for solv-
ing sequential decision-making problems. Some reinforcement
learning methodologies are proposed for the formation control
of robots [4] [5]. However, the error of the methods is still
significant compared to traditional methods [6] [7].

Finally, energy-efficient hardware designs are critical for
small, autonomous swarm robots, which are expected to
interact continuously with others in a real-time environment
[8]. In this work, we proposed a multi-robot formation control
algorithm combining the features of the collective behavior
model and reinforcement learning. The proposed approach
takes advantage of a model-based method that ensures the
accuracy of control with a low error rate while retaining the
adaptive characteristics of swarms. Moreover, the proposed
rules of the model are hardware-friendly and easy to be
implemented at a low cost. Finally, the robots employing
the proposed approach are able to adapt to the environment
reliably due to the characteristic of the learning-based method
with significantly reduced area and power compared to the
previous works.



II. ALGORITHM DESIGN

A. Metric distance model

In the Boids model, collective behavior relies on the local
interaction of individual agents. Each agent follows only three
simple rules [2]:

• separation: avoid collision with neighbors
• alignment: match speed and direction with neighbors
• cohesion: stay close to neighbors
Couzin used the metric distance model to implement the

rules of the Boids model by separating the behaviors into three
concentric zones [3]. As shown in Fig.1, the nearest zone
to the individual is the zone of repulsion (zor), the middle
zone is the zone of orientation (zoo), and the furthest zone
to the individual is the zone of attraction (zoa). The radius
of repulsion (ror) and the radius of orientation (roo) are the
outer radii of zor and zoo. Which rule will emerge depends
on the interaction zone where its neighbor is. If there is a
neighbor in the zoa, the agent attempts to stay close to the
neighbor. Finally, if there is a neighbor in the zoo, the agent
will align itself with the neighbor [9].

B. Reinforcement Learning

In this work, we use approximate reinforcement learning to
cope with the real-world environment. The method consists
of five components for its update rule: the current state and
action s, a, the immediate reward r, and the next state and
action s′, a′. The update rule of the method is:

Q(s, a)← Q(s, a) + α[R(s) + γmaxaQ(s′, a′)−Q(s, a)]

The Q function estimates the Q-value of actions. The robot
will take the action with the largest Q-value. The parameters
of Q function are updated based on the action that the robot
takes from the next state with the current policy. Traditional
reinforcement learning has dealt with discrete and finite-
state/action spaces. This work proposes a method of using
function approximation that allows robots to learn with contin-
uous states in real-world situations. In our approach, discrete
action space is sufficient due to the limited acceleration for
smooth movement.

C. System Integration of the Metric Distance Model and
Reinforcement Learning

We propose an algorithm of multi-robot formation control
based on the swarm behaviors and approximation reinforce-
ment learning. First, the system calculates the error with the
rules in the metric distance model, while linear approximation
is used to evaluate Q-values. Then, the Q-learning module
finds the best action and adjusts the policy according to Q-
values and reward.

We use the metric distance model that is more intuitive
for robot sensors. Narrowing the boundaries of zoo improves
the accuracy performance on aligning with neighbors at the
desired distance. Given a distance between agents DA, a zoo
width δ, ror and roo are DA − δ/2, DA + δ/2 respectively.

Fig. 2. Reinforcement learning implementation in this work

To promote the swarm moving toward the goal, we add
the velocity rule and the goal rule. For the reward and Q-
value function, we mathematically formulated the rules for
determining actions at the given states:

ev = |Vref − vi|

egoal = 1− cosϕi,goal(s), −π < ϕi,goal(s) ≤ π

ezor,i,j =

{
DA − di,j(s) di,j(s) < DA − δ/2

0 otherwise

ezoa,i,j =

{
di,j(s)−DA di,j(s) > DA + δ/2

0 otherwise

ezoo,i,j =

{
ϕi,j(s) DA − δ/2 < di,j(s) < DA + δ/2

0 otherwise

eobs =

{
cosϕi,obs(s)/di,j(s) −π/2 < ϕi,obs(s) ≤ π/2

0 otherwise

where di,j(s) denotes the distance between agents i and j
at state s, ϕi,j(s) denotes the difference of direction between
agents i and j at state s. ϕi,goal(s) denotes the difference angle
between agent i toward goal and direction of agent i.

The Q-function is defined as

Q(s, a) = wzor

∑
ezor,i,j + wzoa

∑
ezoa,i,j

+ wzoo

∑
ezoo,i,j(s) + wvev + wgoalegoal

The algorithm uses the policy gradient method to minimize
the function. For every iteration, after receiving an input signal,
the agent predicts the Q-function for each action and updates
its policy by evaluating the actual error for the last prediction.
The RL technique has been illustrated in Fig. 2.



Fig. 3. System architecture

III. SYSTEM ARCHITECTURE

The proposed system architecture is shown in Fig.3. The
system uses 16-bit integer resolution for input and output
computation. Input signals from sensors include self velocity,
relative position and orientation to other robots, and the desired
goal. During an evaluation, the proposed system simulates
each action and calculates Q-value. Next, the system chooses
argmaxa(Q) or a random action according to a ϵ-greedy
policy. Finally, it updates weights by the gradient descent
method.

The proposed algorithm is intuitive and friendly to hardware
implementation. It requires only low-complexity linear arith-
metic operations for the primary components of computation.
The trigonometric and square root modules are employed
for the calculation of simulated distance. The trigonometric
module is implemented using a lookup table and the square
root module uses a bit-wise binary search method, both of
which help minimize the overall latency. To further lower the
cycle time,ezor,i,j and ezoa,i,j can be modified to quadratic
function as:

ezor,i,j = (DA − di,j(s))
2, di,j(s) < DA − δ/2

ezoa,i,j = (di,j(s)−DA)
2, di,j(s) > DA + δ/2

This modification eliminates the need for complex square
root operation, which significantly saves average cycle time
by 60% while maintaining overall accuracy and performance.
Finally, since each neighbor meets only one condition of three
rules, the arithmetic modules can be dynamically allocated
and shared to further reduce the area cost by 11%. Fig.
4 summarizes the corresponding area and power reduction
resulting from different optimization techniques, respectively.

(a) Area

(b) Power

Fig. 4. Hardware optimization

IV. RESULT

A. System verification

In the experiments, the distance between agents is 1 m, and
the maximum velocity is 1.2m/s. The agents use their optimal
policy during performance analysis. In the first experiment,
we compare the original Boids model and our algorithm with
the metric distance model. The original Boids mathematical
model is unstable because of the difficulty in finding a balance
between the rules. Our method realizes a state-of-the-art aver-
age error rate lower than 1%, which achieves higher accuracy
than other deep learning methods [6] [10]. The result is shown
in Fig. 5. In the second and third experiments, we compare
the performance improvements of using RL method for the
tasks of triangular and square formation. The respective results
are shown in Fig. 6, and Fig. 7. The significant performance
improvement clearly demonstrates that the proposed learning-
based method is essential for the robotic system to optimize
the policy. The proposed model is substantially more stable
and accurate to reach the goal.

B. Hardware implementation

The proposed system is implemented in a 130-nm CMOS
process. The synthesis results show that the system area is
0.13mm2 and the power consumption is 2.8mW. As shown in
Table I, the proposed design substantially outperforms other
works in the area and power performance, when compared
to the state-of-the-art accelerator designs performing similar
tasks [11] [12] [13]. The design [11] consumes lower power
but has substantially larger area and lower resolution.



(a) (b)

Fig. 5. Distance error (a) Original Boids model (b) With the metric distance
model

(a) Motion path (b) Distance error

(c) Motion path (d) Distance error

Fig. 6. Triangle formation (a)(b) before RL (c)(d) after RL

(a) Motion path (b) Distance error

(c) Motion path (d) Distance error

Fig. 7. Square formation (a)(b) before RL (c)(d) after RL

TABLE I
COMPARISON WITH THE OTHER HARDWARE ACCELERATORS

This Work
JSSC
2019

ISSCC
2018

ISSCC
2016

Technology 130nm 55nm 65nm 65nm

Area 0.13mm2 3.4mm2 16mm2 16mm2

Resolution 16b 6b 16b 16b
Power 2.8mW 690µW 6.57mW 45mW

Frequency 50MHz 67.5MHz 10-100MHz
Not
Reported

TABLE II
COMPARISON WITH THE OTHER GENERAL PROCESSORS

This Work
Raspberry
Pi 3B

i7-7700
CPU

Power 2.8mW 1.4W 14W

Task
Swarm
Robot

Leader
Follower

Swarm
Robot Fish

The proposed system is significantly more power-efficient
than other designs based on general processors, as shown in
Table II. Robots that use i7-7700 CPU consume 14 Watts [14],
while robots equipped with Raspberry Pi 3B consume at least
1.4 Watts [15].

V. CONCLUSION

In this work, we present a biologically inspired approach
for distributed multi-robot formation control. We introduce
an algorithm based on the swarm metric distance model and
reinforcement learning. The design maintains the advantage of
the model-based method, which demonstrates high accuracy
while realizing the high adaptability from the learning-based
method. The experiments results show that the agents move
smoothly with a low error rate. The hardware implementation
results demonstrate high area and power efficiency, which
offers a promising solution to emerging multi-robot systems.
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