
Integrating Planning and Deep Reinforcement
Learning via Automatic Induction of Task

Substructures

Jung-Chun Liu, Chi-Hsien Chang, Shao-Hua Sun, Tian-Li Yu
National Taiwan University

Taipei, Taiwan
{r10921043,d07921004,shaohuas,tianliyu}@ntu.edu.tw

Abstract

Despite recent advancements, deep reinforcement learning (DRL) still struggles
at learning sparse-reward goal-directed tasks. On the other hand, classical plan-
ning excels at addressing hierarchical tasks by employing symbolic knowledge,
yet most of the methods rely on assumptions about pre-defined subtasks, making
them inapplicable to problems without domain knowledge or models. To bridge
the best of both worlds, we propose a framework that integrates DRL with clas-
sical planning by automatically inducing task structures and substructures from
a few demonstrations. Specifically, symbolic regression is used for substructure
induction by adopting genetic programming where the program model reflects
prior domain knowledge of effect rules. We compare the proposed framework to
state-of-the-art DRL algorithms, imitation learning methods, and an exploration
approach in various domains. Experimental results on various tasks show that
our proposed framework outperforms all the abovementioned algorithms in terms
of sample efficiency and task performance. Moreover, our framework achieves
strong generalization performance by effectively inducing new rules and compos-
ing task structures. Ablation studies justify the design of our induction module
and the proposed genetic programming procedure.

1 Introduction

Deep reinforcement learning (DRL) as an inductive learning method allows agents to deal with
high-dimensional decision-making problems considered intractable in the past [4]. DRL has ap-
plied to various fields, including robotics [33], autonomous driving [21], and video games [30].
However, exploring complex tasks with sparse and delayed rewards still remains challenging, lead-
ing to inapplicability on many real-world problems comprising multiple subtasks, e.g., cooking and
furniture assembly.

In contrast, classical planning is a deductive learning method which aims to solve planning and
scheduling problems. Particularly, classical planning is adept at finding the sequence of actions in
deterministic and known environments. Researchers in classical planning have developed effective
planners that can handle large-scale problems [50]. Yet, classical planning agents face difficulties
exploring environments due to limitations in model and domain-specific representation in unknown
environments where action models are undiscovered.

Several methods work on combining planning and DRL to address hierarchical tasks with high-
level abstraction. Konidaris et al. [22] develop a skill-up approach to build a planning representation
from skill level to abstract level, while they do not encompass the process of skill acquisition from
low-level execution. Mao et al. [29] introduce an extension of planning domain definition lan-

Preprint. Under review.

guage (PDDL) [15, 42] to model the skill, and [43] propose a method for learning parameterized
policies integrated with symbolic operators and neural samplers. However, they consider object-
centric representations, which require fully observable environments and carefully designed predi-
cates.

In this paper, we combine classical planning and DRL to augment agents effectively to adapt to
environments by inducing underlying prior knowledge from expert demonstrations. Specifically, we
devise a method that induces symbolic knowledge using genetic programming [23], an evolutionary
computation approach, to discover task substructures represented as expression trees that accurately
capture the underlying patterns within the data. The compositional property of the programs enables
generalizability that adapts to new environments by discovering new substructures from known ones.

To evaluate the proposed framework, we design three gridworld environments where agents can
move on and interact with objects. The result shows the improvement of DRL agents and outperfor-
mance compared to other imitation learning and exploration-based methods. Also, our framework
demonstrates generalizability by inducing variant substructures and recomposing task structures.
Finally, we show the ablation studies about the accuracy of induction.

2 Related Work

Learning abstraction from demonstrations. State abstraction facilitates the agent’s reasoning
capabilities in high-level planning by extracting symbolic representations from low-level states [1,
16]. Agents can learn the abstraction from demonstrations since demonstrations encompass valuable
information regarding task composition and relevant features [7]. Some methods were developed to
extract task decomposition and abstraction from demonstrations [17, 11]. Our work extends these
approaches to infer knowledge from demonstrations.

Learning planing action models. To leverage the strategies of classical planning, many works
developed building action models, including skill acquisition and learning action schema [3, 47,
34, 9, 43, 29]. However, these works mainly focus on the existing planning benchmark and do not
address the issues in general Markov decision process (MDP) problems. In this work, we focus on
extending these approaches to introduce inferred knowledge to DRL.

Hierarchical task learning. A proper hierarchical structure is crucial for task decomposition and
abstraction. Various methods have been proposed for constructing hierarchical task representation
[35], including graphs [49], automata [14, 19, 20, 52], programs [48], and hierarchical task net-
works [17, 45]. Some approaches utilize the capabilities of deep learning with intrinsic rewards
[24, 12]. In addition, some of these works specifically address leveraging knowledge to deal with
multiple compositional tasks via task decomposition [2, 46, 27, 48, 44, 14]. Despite the success in
building hierarchical models shown in previous works, how to induce the required subtasks has not
been addressed. Therefore, we develop a method to induce symbolic knowledge and leverage it for
hierarchical task representation.

3 Problem Formulation

We address the sparse-reward goal-directed problems which can be formulated as MDPs denoted
as ⟨S,A, T,R, γ⟩. DRL agents often struggle at solving sparse-reward, hierarchical tasks, while
classical planning techniques excel in such scenarios. On the other hand, unlike classical planning,
DRL, as a generic model-free framework, does not require pre-defined models. This motivates us to
bridge the best of both worlds by integrating these two paradigms.

However, while DRL directly learns from interacting with MDPs, classical planning operates on
literal conjunctions. To address this gap, we integrate planning and DRL methods by annotating
the specific MDP actions in the form of action schemata. Specifically, we consider the problem of
inducing the action schemata from demonstrations. The objective is to induce the action schemata
which can be leveraged for task structure deduction. After the action schemata are discovered, the
framework deduces task structures from the action model and aims to offer guidance for the training
of DRL agents based on the task structures.

2

wood ≥ 2 at_workbench = 1

stick + 1wood - 2

make_stick
make1

(a) Critical action

Name Symbol Example

Critical action ψ make_stick
MDP action aψ make1
Effect variables V(eff (ψ)) {wood, stick}
Effect eff (ψ) {wood− 2, stick+ 1}
Precondition variables V(pre(ψ)) {at_workbench, wood}
Precondition pre(ψ) {at_workbench = 1, wood ≥ 2}

(b) Symbols and examples of an action schema make_stick.

wood ≥ 2 at_workbench = 1

stick + 1wood - 2

make_stick

stick = 1

at_wood = 1

pickup_wood× 2

wood+(1×2)

× 1

stick = 0

(c) Critical-action network

Inventory
empty

Inventory
wood ✕ 2

Inventory
stick ✕ 1

MDP
actions

MDP
actions

right
right
down
pickup
pickup

down
left

make1

(d) Example of making a stick in MINECRAFT

Figure 1: Critical action. (a)-(b) The illustration, symbols, and examples of a critical action.
A critical action is an essential action in environments with preconditions and effects. (c) Critical-
action network. If an action model is discovered by the induction module, it builds critical-action
networks. (d) Example of making a stick in MINECRAFT. Actions highlighted by red rectangles
are critical, i.e., picking up wood twice and making a stick (make1).

4 Integration of MDP in DRL and Planning with Critical Action

To bridge the gap between DRL and planning, we introduce the concept of critical actions in this
section. Specifically, we formulate our problems as mapping tasks described by MDPs to PDDL
and SAS+ [8], where the preliminary notation is elaborated in Appendix A. To express numeric
variables, we adopt the configuration of PDDL 2.1 [13], which includes arithmetic operators for
specification.

Critical action. In an MDP task, some actions are critical for progress and must be executed
in a specific order, while others are for general purposes (e.g., changing the position or orienta-
tion). These critical actions can be recognized from the critical effects, which are necessary state
changes to achieve a goal. Thus, we define critical action schemata with critical effects and the
required preconditions in classical planning, considering mapping the problem to a planning task
Π = ⟨V,O, s′g⟩, where V is a set of variables, O is a set of operators in the domain, and s′g is
a partial state describing the goal. A critical action ψ ∈ O is a planning operator whose action
schema can be defined as a tuple ⟨aψ, pre(ψ), eff (ψ)⟩. We define the notations as follows, and an
illustration is shown in Figure 1.

• MDP action aψ ∈ A denotes the MDP action mapping to ψ.

• Precondition pre(ψ) is a set of conditions requires satisfaction before executing ψ.

• Effect eff (ψ) is a set of functions which indicates the state change after executing ψ.

A state s′ ∈ S ′, where S ′ denotes planning state space, is an assignment to V , where V(p) denotes
the variables of the assignment p. Given an effect eff (ψ) and one of its variables v ∈ V(eff (ψ)),
an effect rule eff (ψ)v : R → R is a function which transfers the specific feature value s′v in s′
to another value eff (ψ)v[s

′
v] in the transition, and a precondition rule pre(ψ)v is a logical formula

pre(ψ)v : R→ {0, 1} that determines whether the variable v is satisfied to execute ψ. Given a state
s′, two critical action ψ and ϕ, eff (ψ)v satisfy pre(ϕ)v in state s′ iff a variable v in both V(eff (ψ))
and V(pre(ϕ)), and pre(ϕ)v[s

′
v] is false while pre(ϕ)v[eff (ψ)v[s

′
v]] is true in a transition with ψ.

That is, executing ψ makes ϕ become admissible.

To efficiently induce the model, we assume that the properties of the features in a state are known.
Precondition variable space P = {v | v ∈ V(pre(ψ)) ∀ ψ ∈ O} contains the variables that may
affect admissibility of some variables, while in this work, P = V . Effect variable space E = {v |

3

Induction
Module

Critical Actions

DRL Module

Critical Action Network

Goal
 Intrinsic
 Reward

 RewardAction

Training
Module

Knowledge
Base

Training Data

Environment

Agent

Demonstrations

State

(a) Framework overview

Collecting
Demonstrations

 Extracting
Action-Effect Linkage

 Determining
Effect Symbolic Rules

Demonstrations

Action-Effect Pairs

 Determining
Precondition Rules

Effect Rules

Precondition Rules

Critical Action Schemata

(b) Induction module
Figure 2: (a) Framework overview. The proposed framework is two-stage. In the induction stage,
critical action schemata are induced from demonstrations. In the training stage, the training module
deduces the critical-action network from the goal by backward-chaining and offers intrinsic rewards
to the DRL module according to the network. (b) Induction module. The induction module induces
the critical action schemata from demonstrations through three steps. First, it finds the linkage
between actions and effect variables in transitions. Then, given the transitions with action-effect
linkage, the induction module induces the effect rules via symbolic regression. Finally, it determines
the precondition given the specific action and the effect.

v ∈ V(eff (ψ)) ∀ ψ ∈ O} contains the variables that will change in transitions and related to the
progress of the tasks.

Mapping between MDP and classical planning. Lee et al. [25] have developed the abstraction
mapping between planning and MDP problems, which is aligned with the concept of critical action.
Let L : S → S ′ be a mapping from the MDP state space S to high-level planning state space S ′.
Given an MDP problem, the abstraction ⟨L,Π⟩ is proper iff there exists a mapping L to Π such
that ⟨L(s), ψ,L(T (s, aψ))⟩ ∈ T ′ if some ψ is admissible in the MDP state s ∈ S or L(s) =
L(T (s, aψ)), where T ′ is a set of all possible transitions in Π. In this work, we focus on the
MDP problems with proper abstraction in which a mapping to a planning domain exists, and action
models can be induced by the proposed framework. In addition, since we map the critical action with
exactly one MDP action and map each si in MDP problems with distinct s′v in planning, considering
a planning task as an MDP-like tuple ⟨S ′,O, T ′⟩, a transition ⟨s, aψ, T (s, aψ)⟩ in an MDP problem
can be directly transferred to the transition ⟨L(s), ψ,L(T (s, aψ))⟩ in planning domain.

Critical-action network. This work represents symbolic knowledge structures as critical-action
networks illustrated in Figure 1c. Given a set of critical actions O and a desired goal specification
pgoal, a critical-action network G = (V,E) is an in-tree structure where the root is the critical action
that can satisfy the goal specification directly. For each edge (ψ, ϕ) ∈ E, there exists eff (ψ)v for
some v that satisfy pre(ϕ)v . Once the action schemata are known, we can construct the network
using planners or backward chaining.

5 Method

Section 5.1 introduces the induction module that determines the critical actions from demonstrations
and extracts symbolic rules in . Then, Section 5.2 describes the training module that deduces task
structures to build critical-action networks online from the given goal. The network contains subtask
dependencies, providing guidance through intrinsic rewards and augmenting the training efficiency
of DRL agents. An overview of our proposed framework is illustrated in Figure 2a.

4

Start

Population
Intialization

Evaluation

Terminate?

Crossover Mutation Duplication

True

End

False

Selection

Reproduction

(a) Procedure of genetic programming

-

wood 2

action effect variable state next state

make1 wood

wood = 2, ... wood = 0, ...

wood = 4, ... wood = 2, ...

wood = 3, ... wood = 1, ...

÷

wood 2

make1 ↔ {wood, stick}

fitness = 1

woodt+1=woodt-2 woodt+1=woodt÷2

fitness = 0.33

+

wood 1

fitness = 0

woodt+1=woodt+1

(b) Example of fitness evaluation

Figure 3: Symbolic regression using genetic programming. Given a pair of an MDP action and
effect variables, symbolic regression is used to determine the rules when executing the action. (a)
Procedure of genetic programming. The programs iteratively evolve through fitness evaluation,
selection, and reproduction. (b) Example of fitness evaluation. The algorithm evaluates the accu-
racy of programs to induce the rule between make1 and wood.

5.1 Induction Module

The procedure of the induction module is illustrated in Figure 2b. The module first extracts action-
effect linkages (a,V(eff (ψ))) from demonstrations. Second, the module induces effect rules eff (ψ)
given (a,V(eff (ψ))). Finally, the module leverages the rules to determine the precondition rules
pre(ψ) for each (a, eff (ψ)). After these steps, the components of critical action schemata are all
determined. Note that we name the critical action ψ for the convenience of reference, which is not
known when inducing action schemata. We use “·” to represent an undefined critical action. The
following paragraphs will elaborate on the details of the induction methods.

Action-effect linkages. Based on the outcome assumption that one action only impacts specific
state features, we can detect co-occurrence of what effects often occur after executing a by cal-
culating mutual information [41] between actions and effect variables. Let E be a set of possible
effect variable combinations V(eff (·)) in the transitions of demonstrations. The mutual information
M(a,V(eff (·))) is defined as follows:

M(a,V(eff (·))) =
∑
a∈A

∑
V(eff (·))∈E

PAE(a,V(eff (·))) log PAE(a,V(eff (·)))
PA(a)PE(V(eff (·)))

, (1)

where PA(a) is the count of transitions with action a; PE(V(eff (·))) is the count of transitions that
include variables in V(eff (·)); PAE(a,V(eff (·))) is the count of transitions that include changed
variables in V(eff (·)) with action a. To determine the linkage, the pairs are divided into two clusters
with the threshold of a maximum gap, and the cluster with higher values are selected. The detailed
algorithm is shown in Appendix B.1.

Effect symbolic rules. Given an action-effect pair (a,V(eff (·))), the induction module proceeds
to search for the effect eff (·), which can be formulated as a symbolic regression. To accomplish
this, we employ genetic programming for symbolic regression to discover each effect rule eff (·)v
for all v in V(eff (·)), aiming to discover programs that can accurately predict the effects.

In genetic programming, each program is represented as an expression tree, taking sv and aψ in
each transition as input and yielding the predicted value of v after the transition as output. The
algorithm consists of three key steps: initialization, evaluation, selection, and reproduction. Initially,
a population of programs is randomly generated. The fitness of each program is evaluated based
on its prediction accuracy, and the programs with the highest fitness values are selected, serving
as parents to reproduce offspring through crossover, mutation, and duplication mechanisms. The
procedures and the example of genetic programming are illustrated in Figure 3.

5

The model of symbolic rules is regarded as the substructures of the subtasks, and selecting the proper
operators for the symbolic model compatible with the effects plays a crucial role in facilitating effec-
tive inference. For instance, in the context of general DRL task with numerical variable representa-
tion configuration, arithmetic operation set F = {+,−,×,÷, inc,dec} is used as the function set in
genetic programming, where inc denotes an increment operator and dec denotes a decrement oper-
ator. This choice of function set is consistent with the numerical variable representation commonly
employed in DRL tasks. The underlying assumption guiding our approach is that the effects can
be expressed through these programs, serving as prior knowledge of the problem. This allows our
method to induce task substructures and generalize the knowledge across domains that share iden-
tical operation configurations. This distinguishing feature sets our approach apart from alternative
model-free methodologies. Additional implementation details can be found in Appendix B.2.

Precondition rules. After the relation between a and eff (·) are found, determining precondition
rules pre(·) can be formulated as a classification problem, as the objective is to identify whether
eff (·) occurs given the action and the state. The process involves minimal consistent determina-
tion (MCD) and the decision tree method. The model of pre(·) decides what preconditions leading
to desired effects after executing a. Additional details can be found in Appendix B.3.

5.2 Training Module

After the induction process, the critical action schemata serve as the components of knowledge base
that guides the agent in the training stage. During the training stage, the training module deduces
the critical-action network given the initial state and goal specification and provides intrinsic reward
if the agent successfully performs an action that meets the critical effects in the network.

Inferring critical-action network. Once the critical actions schemata are defined, we can infer
task structures from the model. Given a goal and an initial state, the proposed framework deduces
the critical-action networks by backward chaining. Starting from the goal, the module searches for
the critical action to find the desired effect for unconnected precondition rules pre(·)v where v ∈ E.
Maximum operation steps are set to terminate the search. Once the critical action is found, the
critical action will be considered as the predecessor of previous critical actions.

DRL agent. In the training stage, we aim to train a DRL agent that can learn the subtask by lever-
aging the feature-extracting power of neural networks. The induction module only specifies the
coarse-grained critical action to express temporal order. Therefore, the framework deploys DRL to
complete the fine-grained decision-making tasks, which utilizes deep learning to approximate the
optimal policy with neuron networks. DRL uses the policy gradient method to update the policy. In
the proposed method, we use the action-critic method [32, 37] as the DRL agent. The implementa-
tion details are described in Appendix B.4.

Intrinsic rewards. During the training stage, if the agent successfully executes the critical effects,
it will receive an intrinsic reward when the preconditions of a critical action ψ are satisfied. Con-
versely, if the agent takes an action that leads to undesired effects, such as violating effect rules, it
will receive a penalty. However, note that our model only specifies positive critical actions and does
not explicitly identify actions that have possible negative consequences. Therefore, the implemen-
tation of a penalty depends on the specific domain.

6 Experiments

We evaluate our framework and provide ablation studies in this section. Section 6.1 lists the algo-
rithms we use for comparison. Section 6.2 provides the description of the environments and tasks.
Section 6.3 presents the results of training efficiency and performance. Section 6.4 demonstrates the
generalizability in different levels.

6.1 Baselines

We extensively compare our framework to various DRL algorithms (DQN and PPO) learning from
rewards, imitation learning methods (BC and GAIL) learning from demonstrations, advanced ap-

6

proaches (DQN-RBS and BC-PPO) that leverage both rewards and demonstrations, and an explo-
ration method (RIDE) that maximizes intrinsic and extrinsic rewards.

• Deep Q-Network (DQN; [31]) is an off-policy deep Q-learning algorithm.

• Proximal Policy Optimization (PPO; [40]) is a state-of-the-art on-policy DRL algorithm.

• Behavior cloning (BC; [39]) imitates an expert by learning from demonstrations in a su-
pervised manner.

• Generative adversarial imitation learning (GAIL; [18]) mimics expert behaviors via
learning a generative adversarial network whose generator is a policy.

• DQN-RBS initializes the replay buffer of DQN with demonstrations, allowing for a per-
formance boost. This is inspired by the replay buffer spiking technique [26].

• BC-PPO pre-trains an BC policy using demonstrations and then fine-tunes the policy with
PPO using rewards, similar to Video PreTraining (VPT; [5]).

• Rewarding impact-driven exploration (RIDE; [38]) is an RL exploration method in-
spired by the intrinsic curiosity module [36].

6.2 Environments & Tasks

To evaluate the proposed framework and the baselines, we design three groups of tasks in a 8 × 8
gridworld environment, where an agent can move along four directions {up, down, left, right}
and interact with objects. The tasks are described as follows. See Appendix C for more details.

SWITCH requires an agent to turn on the switches in sequential order. If it toggles the wrong switch,
the progress will regress, which makes it challenging for DRL agents to solve the task through
solely exploration. We design four tasks 4-SWITCH, 8-SWITCH, 4-DISTRACTORS and 4-ROOMS,
where 4-SWITCH and 8-SWITCH evaluate the performance between different difficulties of tasks. 4-
DISTRACTORS consist of four target switches and four distractor switches, and 4-ROOMS combines
the configuration Minigrid four-rooms tasks [10].

DOORKEY features a hierarchical task similar to the Minigrid door-key tasks, where the agent needs
to open a door with a key and turn on a switch behind the door.

MINECRAFT is inspired by the computer game Minecraft and is similar to the environment in pre-
vious works [44, 2, 48, 6]. The environment is designed for evaluation using multiple-task demon-
strations. We select a simple task IRON, a difficult task ENHANCETABLE, and a multiple-goal task
MULTIPLE.

DQN PPO BC GAIL DQN-RBS BC-PPO RIDE Ours

0 1 2 3 4 5
Steps (M)

0.0

0.2

0.4

0.6

0.8

1.0

Re
w

ar
ds

(a) 4-SWITCHES

0 1 2 3 4 5
Steps (M)

0.0

0.2

0.4

0.6

0.8

1.0

Re
w

ar
ds

(b) 8-SWITCHES

0 1 2 3 4 5
Steps (M)

0.0

0.2

0.4

0.6

0.8

1.0

Re
w

ar
ds

(c) 4-DISTRACTORS

0 1 2 3 4 5
Steps (M)

0.0

0.2

0.4

0.6

0.8

1.0

Re
w

ar
ds

(d) 4-ROOMS

0 1 2 3 4 5
Steps (M)

0.0

0.2

0.4

0.6

0.8

1.0

Re
w

ar
ds

(e) DOORKEY

0 1 2 3 4 5
Steps (M)

0.0

0.2

0.4

0.6

0.8

1.0

Re
w

ar
ds

(f) IRON

0 1 2 3 4 5
Steps (M)

0.0

0.2

0.4

0.6

0.8

1.0

Re
w

ar
ds

(g) ENHANCETABLE

0 1 2 3 4 5
Steps (M)

0.0

0.2

0.4

0.6

0.8

1.0

Re
w

ar
ds

(h) MULTIPLE

Figure 4: Task performance. We report the mean (line) and the standard deviation (shaded regions)
of the training curves over 5M steps out of three runs. Our approach outperforms other methods,
especially in advanced tasks.

7

For the methods that require demonstrations, we collect 20 demonstrations from corresponding tasks
in SWITCH and DOORKEY and collect 64 multiple-task demonstrations from MULTIPLE for all tasks
in MINECRAFT.

6.3 Results

The experimental results in Figure 4 show that our framework outperforms all the baselines on chal-
lenging tasks (e.g., 8-SWITCH, 4-DISTRACITORS, ENHANCETABLE, MULTIPLE) and performs
competitively on simpler tasks (e.g., DOORKEY, 4-SWITCHES, IRON). The imitation learning ap-
proaches, BC and GAIL, fail to learn all the tasks due to insufficient demonstrations and lack of
exploration, while RIDE, BC-PPO, and DQN-RBS, which consider rewards online, fail on advanced
tasks that require long-term planning. In contrast, our framework can leverage the knowledge from
the same number of demonstrations and efficiently explore the environment, especially on the tasks
8-SWITCHES where all the baselines completely fail, as shown in Figure 4b. Moreover, our pro-
posed framework is the most sample-efficient method in learning the DOORKEY task.

6.4 Generalizability

Our framework employs the critical-action model to achieve task-level generalizability, enabling the
construction of novel task structures based on familiar critical actions. Additionally, we introduce
genetic programming, renowned for its adaptability in reasoning symbolic rules as task substruc-
tures, thereby enhancing generalizability at the rule level. To define the domain gap, we denote
the original domain as the domain where demonstrations are collected and the variant domain as
the domain where agents learn. For rule-level generalizability, we define a variant critical action
ϕ from ψ where V(eff (ϕ)) = V(eff (ψ)) and V(pre(ϕ)) = V(pre(ψ)) while eff (ϕ) ̸= eff (ψ)
or pre(ϕ) ̸= pre(ψ). If a critical action ψ varies, the induced symbolic programs and the popu-
lation can evolve and adapt to new substructures. Since V(pre(ϕ)) and V(eff (ϕ)) are known, the
procedure starts from inducing effect rules eff (ϕ) ̸= eff (ψ). Thus, the proposed framework can
potentially achieve task generalization.

Setup. To evaluate the generalizability of our framework and baselines, we consider 4-SWITCHES-
(N+1) as the original domain and its variant domains, 8-SWITCHES-(N+1), 4-DISTRACTORS-
(N+1), and 4-DISTRACTORS-(2N+1). In 8-SWITCHES-(N+1), we extend the number of switches
from 4 to 8 to evaluate the generalization of task structures. In 4-DISTRACTORS-(N+1), 4 distractor
switches are added to 4-SWITCHES-(N+1), and in 4-DISTRACTORS-(2N+1), the order of switches
changes to 2n+ 1 (e.g., 1→ 3→ 5→ 7), while the order of switches in N-DISTRACTORS-(N+1)
is n + 1 (e.g., 1 → 2 → 3 → 4). This series of settings evaluates if a method can generalize
to different effect rules. We collect 200 demonstrations in 4-SWITCHES-(N+1) and and run 5M
steps for all methods. For 4-DISTRACTORS-(2N+1), we collect only 4 additional demonstrations
for all methods, and our framework leverages the previous populations of genetic programming to
re-induce the rules, which only require few-shot demonstrations.

Table 1: Generalization performance in the original
domain 4-SWITCHES and its variant domains.

Task GAIL BC-PPO Ours

4-SWITCHES-(N+1) 30%±8% 97%±0% 96%±1%

8-SWITCHES-(N+1) 10%±2% 00%±0% 90%±2%
4-DISTRACTORS-(N+1) 10%±7% 41%±4% 95%±2%
4-DISTRACTORS-(2N+1) 11%±6% 33%±2% 95%±1%

Baselines. We compare our framework
with the best-performing baselines (BC-
PPO) and the most widely used baseline
(GAIL) for the generalization experiments.

Results. The results in Table 1 demonstrate
that the performance of GAIL and BC-PPO
drops in the variant domains, whereas our
framework is able to generalize, highlight-
ing its ability to construct novel rules and structures in the variant domains.

6.5 Ablation Study

This section presents the ablation studies of the induction modules. Section 6.5.1 qualitatively ex-
amines the mutual information and Section 6.5.2 shows the accuracy of symbolic regression using
genetic programming.

8

6.5.1 Action-Effect Linkage

Figure 5: Action-effect mutual information in
MINECRAFT inferred by our framework.

In Section 5.1, we introduce action-effect link-
ages to discover the co-occurred effect vari-
ables and actions. Figure 5 presents the ex-
perimental results in MINECRAFT and shows
the relationship between the logarithm of mu-
tual information and action-effect linkages.
The heat map visualizes the values of all
action-effect pairs, with darker colors indi-
cating higher values and stronger associa-
tions, highlighting the linkages. For instance,
{ wood, stick} is the effect variables
of make_stick as mentioned in Figures 1a
and 1b, discovered by our framework from ex-
ecuting make1.

6.5.2 Symbolic Regression

25 50 75 100 125 150 175 200
Number of Demonstrations

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (
%

)

Polulation size
500 1000 2000

Figure 6: Symbolic regression accuracy.

The proposed framework necessitates a robust
symbolic regression module to generate the
symbolic rules. In Section 5.1, we introduce ge-
netic programming as symbolic regression for
induction. Since genetic programming is a ran-
domized search method, empirical results are
shown to discuss the success rate of finding cor-
rect rules and how much demonstrations are re-
quired to capture the symbolic rules.

The experiment setting is described as follows.
In MINECRAFT environment, there are 27 ef-
fect rules listed in Table 3. We sample different
numbers of demonstrations from random subtasks, and the number of population are 500, 1000, and
2000. Other parameters of genetic programming are the same as the setting in Table 2. We calculate
the number of programs which is equivalent to the ground truth after simplification. The result is the
average accuracy out of five runs shown in Figure 6. We claim that the effect rules can be induced
via genetic programming when a sufficient number of demonstrations and programs in the popula-
tion are available. Noting that the results are related to the diversity of the data. In theoretically,
each n-polynomial rule requires more than n + 1 points for regression. In addition, critical-action
networks can still be built when some rules are inequivalent to the ground truth due to the bias of
the data, as long as the rules match with the precondition of succeeding critical actions.

7 Discussions

We presented a framework to address sparse-reward, goal-directed MDP tasks by integrating DRL
and classical planning techniques. Our proposed framework represents symbolic knowledge as criti-
cal actions and employs a procedure to automatically extract knowledge from a few demonstrations.
This combination of inductive learning (i.e., DRL) and deductive learning (i.e., classical planning)
enables our framework to perform explicit high-level planning and accurate low-level execution, al-
lowing for robust task performance and generalizing to unseen domains. Additionally, the proposed
evolutionary computation provides adaptability at the rule level by inducing the task substructures.

Specifically, by representing knowledge as critical actions and employing critical-action networks,
we provided a structured and organized mechanism for capturing and utilizing symbolic knowledge
within DRL. The proposed procedures of subtask decomposition combine planning and DRL, lead-
ing to effective and efficient learning in goal-directed tasks. Furthermore, the compositionality of
the critical-action model allows for different levels of generalization, and hence such a model has
the potential to address a wide range of general problems. To sum up, our work offers a holistic per-
spective to effectively handle general goal-directed decision-making problems with the integration
of inductive and deductive learning.

9

References
[1] D. Abel, D. Arumugam, L. Lehnert, and M. Littman. State abstractions for lifelong reinforce-

ment learning. In International Conference on Machine Learning, 2018.

[2] J. Andreas, D. Klein, and S. Levine. Modular multitask reinforcement learning with policy
sketches. In International Conference on Machine Learning, 2017.

[3] A. Arora, H. Fiorino, D. Pellier, M. Métivier, and S. Pesty. A review of learning planning
action models. The Knowledge Engineering Review, 2018.

[4] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath. Deep reinforcement
learning: A brief survey. IEEE Signal Processing Magazine, 2017.

[5] B. Baker, I. Akkaya, P. Zhokov, J. Huizinga, J. Tang, A. Ecoffet, B. Houghton, R. Sampedro,
and J. Clune. Video pretraining (VPT): Learning to act by watching unlabeled online videos.
In Neural Information Processing Systems, 2022.

[6] E. Brooks, J. Rajendran, R. Lewis, and S. Singh. Reinforcement learning of implicit and
explicit control flow in instructions. In International Conference on Machine Learning, 2021.

[7] R. Byrne and A. Russon. Learning by imitation: A hierarchical approach. Behavioral and
Brain Sciences, 1998.

[8] C. Bäckström and B. Nebel. Complexity results for SAS+ planning. Computational Intelli-
gence, 1995.

[9] E. Callanan, R. D. Venezia, V. Armstrong, A. Paredes, T. Chakraborti, and C. Muise. MACQ:
A holistic view of model acquisition techniques. In The ICAPS Workshop on Knowledge
Engineering for Planning and Scheduling, 2022.

[10] M. Chevalier-Boisvert, B. Dai, M. Towers, R. de Lazcano, L. Willems, S. Lahlou, S. Pal, P. S.
Castro, and J. Terry. Minigrid & miniworld: Modular & customizable reinforcement learning
environments for goal-oriented tasks. CoRR, abs/2306.13831, 2023.

[11] L. Cobo, P. Zang, C. Isbell, and A. Thomaz. Automatic state abstraction from demonstration.
In International Joint Conference on Artificial Intelligence, 2011.

[12] C. Florensa, Y. Duan, and P. Abbeel. Stochastic neural networks for hierarchical reinforcement
learning. In International Conference on Learning Representations, 2017.

[13] M. Fox and D. Long. PDDL2.1: An extension to PDDL for expressing temporal planning
domains. Journal of Artificial Intelligence Research, 2003.

[14] D. Furelos-Blanco, M. Law, A. Jonsson, K. Broda, and A. Russo. Induction and exploitation
of subgoal automata for reinforcement learning. Journal of Artificial Intelligence Research,
2021.

[15] M. Ghallab, C. Knoblock, D. Wilkins, A. Barrett, D. Christianson, M. Friedman, C. Kwok,
K. Golden, S. Penberthy, D. Smith, Y. Sun, and D. Weld. PDDL - the planning domain defini-
tion language. 1998.

[16] L. Guan, S. Sreedharan, and S. Kambhampati. Leveraging approximate symbolic models for
reinforcement learning via skill diversity. arXiv preprint arXiv:2202.02886, 2022.

[17] B. Hayes and B. Scassellati. Autonomously constructing hierarchical task networks for plan-
ning and human-robot collaboration. In IEEE International Conference on Robotics and Au-
tomation, 2016.

[18] J. Ho and S. Ermon. Generative adversarial imitation learning. Advances in Neural Information
Processing Systems, 2016.

[19] R. T. Icarte, E. Waldie, T. Klassen, R. Valenzano, M. Castro, and S. McIlraith. Learning re-
ward machines for partially observable reinforcement learning. Neural Information Processing
Systems, 2019.

10

[20] R. T. Icarte, T. Klassen, R. Valenzano, and S. A. McIlraith. Reward machines: exploiting
reward function structure in reinforcement learning. Journal of Artificial Intelligence Research,
2022.

[21] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. A. Sallab, S. Yogamani, and P. Pérez. Deep
reinforcement learning for autonomous driving: A survey. IEEE Transactions on Intelligent
Transportation Systems, 2022.

[22] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez. From skills to symbols: Learning symbolic
representations for abstract high-level planning. Journal of Artificial Intelligence Research,
2018.

[23] J. Koza. Genetic programming: On the programming of computers by means of natural selec-
tion. Statistics and computing, 1994.

[24] T. Kulkarni, K. Narasimhan, A. Saeedi, and J. B. Tenenbaum. Hierarchical deep reinforce-
ment learning: Integrating temporal abstraction and intrinsic motivation. Advances in Neural
Information Processing Systems, 2016.

[25] J. Lee, M. Katz, D. J. Agravante, M. Liu, T. Klinger, M. Campbell, S. Sohrabi, and G. Tesauro.
AI planning annotation in reinforcement learning: Options and beyond. In Planning and
Reinforcement Learning Workshop at International Conference on Automated Planning and
Scheduling, 2021.

[26] Z. C. Lipton, J. Gao, L. Li, X. Li, F. Ahmed, and L. Deng. Efficient exploration for dialogue
policy learning with bbq networks & replay buffer spiking. arXiv preprint arXiv:1608.05081,
2016.

[27] A. Liu, S. Sohn, M. Qazwini, and H. Lee. Learning parameterized task structure for general-
ization to unseen entities. In AAAI Conference on Artificial Intelligence, 2022.

[28] W.-Y. Loh. Classification and regression trees. Wiley interdisciplinary reviews: data mining
and knowledge discovery, 2011.

[29] J. Mao, T. Lozano-Pérez, J. B. Tenenbaum, and L. P. Kaelbling. PDSketch: Integrated domain
programming, learning, and planning. In Neural Information Processing Systems, 2022.

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 2015.

[32] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In International
Conference on Machine Learning, 2016.

[33] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi. Deep reinforcement learning for multiagent
systems: A review of challenges, solutions, and applications. IEEE Transactions on Cybernet-
ics, 2020.

[34] H. Pasula, L. Zettlemoyer, and L. Kaelbling. Learning symbolic models of stochastic domains.
Journal of Artificial Intelligence Research, 2007.

[35] S. Pateria, B. Subagdja, A.-h. Tan, and C. Quek. Hierarchical reinforcement learning: A
comprehensive survey. ACM Computing Surveys, 2022.

[36] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. In International Conference on Machine Learning, 2017.

[37] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research,
2021.

11

[38] R. Raileanu and T. Rocktäschel. RIDE: Rewarding impact-driven exploration for procedurally-
generated environments. In International Conference on Learning Representations, 2020.

[39] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured predic-
tion to no-regret online learning. In International Conference on Artificial Intelligence and
Statistics, 2011.

[40] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[41] C. E. Shannon. A mathematical theory of communication. The Bell system technical journal,
1948.

[42] T. Silver and R. Chitnis. PDDLGym: Gym environments from PDDL problems. In Planning
and Reinforcement Learning Workshop at International Conference on Automated Planning
and Scheduling, 2020.

[43] T. Silver, A. Athalye, J. B. Tenenbaum, T. Lozano-Pérez, and L. P. Kaelbling. Learning neuro-
symbolic skills for bilevel planning. In Conference on Robot Learning, 2022.

[44] S. Sohn, J. Oh, and H. Lee. Hierarchical reinforcement learning for zero-shot generalization
with subtask dependencies. Neural Information Processing Systems, 2018.

[45] S. Sohn, H. Woo, J. Choi, and H. Lee. Meta Reinforcement Learning with Autonomous Infer-
ence of Subtask Dependencies. arXiv preprint arXiv:2001.00248, 2020.

[46] S. Sohn, H. Woo, J. Choi, l. qiang, I. Gur, A. Faust, and H. Lee. Fast inference and transfer
of compositional task structures for few-shot task generalization. In Uncertainty in Artificial
Intelligence, 2022.

[47] R. Stern and B. Juba. Efficient, safe, and probably approximately complete learning of action
models. In International Joint Conference on Artificial Intelligence, 2017.

[48] S.-H. Sun, T.-L. Wu, and J. J. Lim. Program guided agent. In International Conference on
Learning Representations, 2020.

[49] M. Svetlik, M. Leonetti, J. Sinapov, R. Shah, N. Walker, and P. Stone. Automatic curriculum
graph generation for reinforcement learning agents. AAAI Conference on Artificial Intelligence,
2017.

[50] M. Vallati, L. Chrpa, M. Grześ, T. L. McCluskey, M. Roberts, S. Sanner, et al. The 2014
international planning competition: Progress and trends. AI Magazine, 2015.

[51] L. Willems. PyTorch Actor-Critic deep reinforcement learning algorithms: A2C and PPO.
https://github.com/lcswillems/torch-ac, 2022.

[52] Z. Xu, B. Wu, A. Ojha, D. Neider, and U. Topcu. Active finite reward automaton inference
and reinforcement learning using queries and counterexamples. In Machine Learning and
Knowledge Extraction, 2021.

12

https://github.com/lcswillems/torch-ac

Appendix

A Preliminary Definition

This section provides the annotations of the Markov decision process (MDP) and planning specifi-
cation discussed in Sectino 4. Section A.1 gives the formulation of MDP problems and Section A.2
explains the definition and the annotation of planning domain definition language (PDDL).

A.1 Markov Decision Process

A decision-making problem is formulated as a Markov decision process (MDP). MDP consists of a
five-tuple ⟨S,A, T,R, γ⟩, where S denotes state space, A denotes action space, T : S × A → S
denotes a transition function, R : S × A → R denotes a reward function, and γ ∈ (0, 1] denotes a
discounting factor.

In contrast with classical planning, problems in reinforcement learning represent the actions and the
states with vectors of numeric values instead of literal conjunctions. A state in S is a n-dimension
vector s, where each entry si, i ∈ {1, 2, ..., n}, represents the value of a numeric variable. In this
work, we focus on goal-directed sparse-reward problems. That is, given an initial state, the objective
is to find a policy to reach a desired goal state, and the agent only receives rewards when reaching
the goal state.

A.2 Planning Domain Definition Language

PDDL is a language in first-order logic to describe the domains and the problems. A domain de-
scription includes the specification of objects, variables, and action models with preconditions and
effects. A problem description includes an initial state and goal specification. These standard lan-
guage specifications allow off-the-shelf planners to deduce the optimal action sequence of the goal.

For theory formalism, we follow the representation of SAS+. To distinguish with MDP state space
S, the state space in the planning domain are denoted as S ′. A SAS+ task Π can be represented as
a tuple ⟨V,O, s′init, p′goal⟩, where V is a set of variables, and O is a set of operators in the domain.
A state s′ ∈ S ′ in the planning domain is an assignment to V , and s′v ∈ R is the value assigned to
the variable v ∈ V in s′. p′ ⊂ s′ is a partial state of s′, where p′ is the assignment to V(p′) ⊂ V .
Specifically, s′init ∈ S ′ is the initial state, and p′goal is a partial state of the goal specification.

A logical condition lv describes the relation between the variable v and an distinct value (e.g.,
wood = 1, stick ≥ 2). Each operator o ∈ O can be described as an action schema in a
pair ⟨pre(o), eff (o)⟩, where pre(o) is a conjunction of logical conditions denoted the precondi-
tion needed to be satisfied before executing o, eff (o) is a set of functions denoted the change toward
the state variables after executing o. The prevail condition is a subset of pre(o) which holds during
the action and does not affect by the effect, denoted as prv(o) = {lv | lv ∈ pre(o), v ̸∈ V(eff (o))}.
An operator o is admissible in state s′ iff pre(o) ⊂ s′ and prv(o) ⊂ s′.
A planning domain can also be formulated as an MDP-like tuple ⟨S ′,O, T ′⟩. The transition graph
of the planning task is a tuple ⟨S ′, T ′,S ′goal⟩, where T ′ is a set of transitions ⟨s′, o, T ′(s′)⟩ for all s′

in S ′, and S ′goal is a set of goal states.

B Implementation Detail

In this section, we elaborate on the implementation detail of the proposed framework that was used
in the experiments. We implement several modules using off-the-shelf packages and approaches,
including genetic programming as symbolic regression with gplearn, the agents with PPO, and the
intrinsic reward function we use in the experiments.

B.1 Algorithm in Extracting Action-Effect Linkages

In Algorithm 1, for each MDP action, we calculate the mutual information between the action and
all combinations of effect variables in demonstrations. Then, we apply the two-center clustering

13

method to determine the threshold shown in Algorithm 2. Two-center clustering finds a threshold
value that separates a given data into two clusters, which minimizes the sum of distances of data
points from their respective cluster centers. We take the logarithm of mutual information as the
metric to avoid incorrect thresholds caused by extremely high mutual information.

Algorithm 1 Extracting Action-Effect Linkages

Input: Demonstrations, action set A, effect set E
Output: Action-effect pairs with linkages L
L← ∅
for a in A do

Na ← ∅
for V(eff (·)) in E do

Na ← Na ∪M(a,V(eff (·)))
end for
t← Two-Center-Clustering(Na)
for V(eff (·)) in E do

if M(a,V(eff (·))) ≥ t then
L← L ∪ (a,V(eff (·)))

end if
end for

end for

Algorithm 2 Two-Center-Clustering

Input: Data D with length n
Output: Threshold of two clusters
cluster1, cluster2 ← ∅
c1, c2 ← min(D),max(D)
if c1 = c2 then

return c1
end if
terminated← False
while not terminated do:

for i = 1 to n do
if |D[i]− c1| < |D[i]− c2| then

cluster1 ← D[i]
else

cluster2 ← D[i]
end if

end for
c′1, c

′
2 ← mean(cluster1),mean(cluster2)

if c1 = c′1 and c2 = c′2 then
terminated← True

end if
c1, c2 ← c′1, c

′
2

end while
return (c1 + c2)/2

B.2 Genetic Programming

Genetic programming is employed as a symbolic regressor for determining symbolic effect rules in
the proposed methods, illustrated in Figure 3a. We use the gplearn package for implementation and
the parameter settings of are shown in Table 2. Given the action-effect linkage (a,V(eff (·))), the
transitions with action a are selected as the training data. For each effect variable v in V(eff (·)), the
algorithm’s objective is to find the program eff (·)v that predicts v after executing the action with the
highest accuracy.

14

Table 2: The parameter setting of gplearn. The parameter with two values indicates that the
settings are different in two phases.

Parameters Value (first/second phase)

population_size 2000/2000
tournament_size 40/40
generations 20/10
p_crossover 0.6/0.6
p_subtree_mutation 0.2/0.2
p_hoist_mutation 0.1/0.1
p_point_mutation 0.05/0.05
max_samples 0.95/0.95
init_depth (2,6)/(2,6)
parsimony_coefficient 0.0001/0.005
function_set {+,−,×,÷, inc,dec}/{+,−,×,÷, inc,dec}

Each program is represented as an expression tree where input is the current state in the transition
and output is the predicted value. The algorithm comprises several steps: initialization, evaluation,
selection, crossover, and mutation. Initially, the population, which is a set of programs, is randomly
generated. Fitness evaluation is then performed on all programs; a subset of programs with the
highest fitness values is selected. These programs serve as parents to produce offspring through
crossover and mutation mechanisms. Through iterative selection and production, the evolution of
the population to discover the programs that best fit the given data. The evaluation metric used in
genetic programming is the percentage of correct effect prediction shown below:

fitness(eff (·)v) =
of transitions with (a,V(eff (·))) consistent with eff (·)v

of transitions with (a,V(eff (·)))
, (2)

where a transition consistent with eff (·)v means that the predicted effect value eff (·)v(sv) is consis-
tent with the actual one T (s, a) given the transition ⟨s, a, T (s, a)⟩. To prevent bloat issues in which
the program grows extremely large to fit the data, the algorithm contains two phases: exploring
and pruning. The best programs with the highest accuracy are determined in the exploring phase.
Subsequently, in the pruning phase, we set high parsimony to prune the program.

B.3 Decision Tree Method

The proposed framework uses classification and regression tree (CART) [28] to build decision trees.
CART is a supervised learning algorithm that generates binary trees by recursive partitioning, where
each internal node represents a decision based on a specific variable, and each leaf node represents
a prediction. Let data partitioned at the internal node m denoted as Dm with nm samples. The
algorithm aims to find a decision with a variable q and a threshold t to partition Dm into two subsets
D0
m and D1

m with n0m and n1m samples. The loss function of the partition is defined as follows:

G(Dm, q, t) =
n0m
nm

H(D0
m) +

n1m
nm

H(D1
m), (3)

where H(Di
m) is the entropy of Di

m. In each partition, the algorithm’s objective is to find the (q, t)
that minimizesG(Dm, q, t) at nodem. This process is repeated recursively until a stopping criterion
is met.

In the given transition ⟨s, a, T (s, a)⟩with a in demonstrations, the current states s are taken as inputs
to a decision tree, and the outcome of the decision tree is a true value that whether T (s, a) consistent
with the rules in eff (·). After generating a decision tree by CART, the model of this decision tree is
then transferred into a conjunction of rules by logical simplification and set as the precondition rules
pre(·), while V(pre(·)) is the set of variables mentioned in pre(·). Considering the precondition
is the conjunction of the precondition rules while the formula of the decision tree may involve
disjunction, the decision tree model is transferred into the disjunctive normal form. Each clause in
the disjunctive normal form is considered the precondition for different critical actions.

15

B.4 Proximal Policy Optimization

We use PPO for the DRL module in our framework and the baseline in this work, and torch-ac [51]
is used for the implementation. The model takes the information of the gridworld and the state from
the environment as input. The gridworld is directly encoded by a four-layer convolution neuron
network with 32× 64× 96× 128 channel size, and the state that transfers into PDDL is encoded by
a two-layer 64 × 64 fully-connected network. Two types of encoded observation are concatenated
and encoded by another two-layer 64×64 fully-connected network. The output-encoded observation
is then used as the input of the actor network and the critic network.

B.5 Reward Function

During the training stage, we train an agent with intrinsic rewards generated from the critical action
network. The modified rewards function is illustrated as follows:

Rint(s) =

{
+1 if execute a critical action,
0 otherwise.

(4)

Given the original reward functionR as extrinsic rewards, the overall reward of the MDP problem is
Rmod(s) = R(s)+Rint(s). In the experiment, the reward function is defined asR = stepmax−step

stepmax
,

where stepmax is the maximum number of steps in the environment, and step is where step is the
current number of steps the agent has done. The setting of the maximum number of steps in each
environment is described in Appendix C.

C Test Environments

We use three MDP environments: SWITCH, DOORKEY, and MINECRAFT for evaluation. The
first environment SWITCH tests the ability to achieve sequential tasks. The second environment
DOORKEY is similar to door-key in Minigrid which is a baseline environment with hierarchical
tasks. The third environment MINECRAFT is designed to evaluate the ability to construct various
task structures with multiple subtasks for compositional tasks. The following sections provide a
description of the environments. The maximum number of steps in DOORKEY is 1600, while in
SWITCH and MINECRAFT is 25600.

C.1 SWITCH

The environment SWITCH is designed to evaluate the ability to solve hierarchical tasks. In SWITCH,
several switches are placed on the grid. The objective of the agent in SWITCH is to sequentially turn
on switches in a pre-determined order.

We define the state variables as V = {at_switch, next_switch, goal_switch}. at_switch
indicates the switch the agent stays at. If the agent does not stay at any switch, this variable is
set to zero. next_switch indicates which switch should be activated in the following actions.
goal_switch denotes the last switch and also implies how many switches should be turned on. The
action space A contains five actions: {left, right, up, down, toggle}. toggle enables the agent
to activate or deactivate a switch.

The switches have three states, including available, on and off. The agent can turn the available
switch to on. If the agent executes the action toggle at the switch, it will be deactivated and turned
to available. The agent can not change the status of the off switch until the predecessor switch is on.
If a on switch is turned to available, all subsequent switches will also be deactivated. This makes it
challenging for RL agents to solve the task through random walks or exploration alone.

For various evaluations, we design several situations, including the number of switches, sequential
order, and distractors. In the following sections, the settings of the tasks are listed and the illustra-
tions can be found in Figure 7.

• N-SWITCHES. When the number of switches increases, the tasks become more difficult as
it has more chance to turn off the switch. This setting evaluates the performance of different
difficulties of tasks.

16

2

1

3

4

(a) 4-SWITCHES

2

1

3

4

6

5

7

8

(b) 8-SWITCHES

2

1

3

4

5

6

7

8

(c) 4-DISTRACTORS

2

1

3

4

(d) 4-ROOMS

Figure 7: Visualization of SWITCH environments. N-SWITCHES in (a) and (b) shows the tasks
which consist of 4 and 8 switches in incremental order. (c) N-DISTRACTORS is the variant N-
SWITHES with other n distractor switches (the circle with dotted line). (d) combines four-room
environment in Minigird, testing the navigation ability of the agent.

• N-DISTRACTORS. Available switches are added as distractors to the environment. The
agent can turn on and off the distractor switches, but it does not help to achieve the tasks.
In n-switch incremental-order tasks, the switches labeled n + 1 to 2n are set as distrac-
tors, while in n-switch incremental-order tasks, the switches labeled 2, 4, ..., 2n are set as
distractors. This setting evaluates whether the agent acquires the ability to select correct
switches and neglects the incorrect ones.

• 4-ROOMS. Two lines of walls divide the gridworld into four rooms according to the four-
room configuration in Minigrid. Every two rooms are interconnected by a gap in the walls.
In this scenario, the agent must navigate through the rooms considering the walls to activate
the switches. This setting evaluates the efficacy of DRL involving navigating obstacles at
low-level execution.

• Order of the switches. To evaluate generalizability, we define two types of orders in-
cluding (N+1) and (2N+1). (N+1) indicates that the switches should be turned on in
incremental order (i.e., 1 → 2 → 3 → 4...) where (goal_switch = n), and (2N+1)
indicates that the switches should be turned on in odd order (i.e., 1 → 3 → 5 → 7...)
where (goal_switch = 2n+ 1). The order are labeled after the task name (e.g., 4-
DISTRACTORS-(N+1)), and by default the order is (N+1).

C.2 DOORKEY

The environment DOORKEY presents a task where an agent must collect a key to unlock a door and
turn on the switch behind the door. It is a basic setting which can be used to evaluate the ability to
solve hierarchical tasks.

C.3 Minecraft

MINECRAFT is inspired by the computer game Minecraft and is similar to the environment in
previous works [44, 2, 48, 6] illustrated in Figure 8a. The agent can pick up the primary ma-
terials on the map and make different tools in specific places consuming the materials. The
goal of each task is to acquire the desired materials or tools. The state variables include
{x, y, at_ < place >,< inventory >}, where at_ < place > denotes whether the agent is at
the place, and < inventory > denotes the number of materials or tools the agent holds.

In our experiments, thirteen types of items are designed in the inventory: wood, stone, stick, iron,
gen, stone_pickaxe, iron_pickaxe, wool, paper, scissors, bed, jukebox, enhance_table,
and there are seven places on the gird world: at_wood, at_stone, at_iron, at_gem, at_sheep,
at_workbench, at_toolshed.

The action spaceA contains eight actions: {left, right, up, down, make1, make2, make3, make4}.
The agent crafts different items when executing different make actions (make1, make2, make3,
make4) and at different places (workbench or toolshed). The formulas of the items are listed in
Table 3, and the dependency of the subtasks is illustrated in Figure 8b. The agent needs to get

17

Inventory
wood ✕ 2, stone ✕ 3

at_wood

at_stone

at_iron

at_gem

at_workbench

at_toolshed

at_sheep

(a) Visualization of MINECRAFT environment.

make_stick

pickup_wood pickup_stone

make_stone_pickaxe

pickup_iron

make_iron_pickaxe

pickup_gem

make_scissors

pickup_woolmake_paper

make_jukebox make_enhance_table make_bed

(b) Dependency of subtasks in MINECRAFT.

Figure 8: Illustration of configuration and subtask dependencies in MINECRAFT environment.
(a) There are 7 locations in MINECRAFT environment, and the agent needs to collect materials and
craft tools at specific location. (b) illustrate the dependencies of the critical actions. For instance, to
execute pickup_iron, the agent needs to make a stone pickaxe. The graph ignores preconditions,
effects, and the number of executions required.

the materials to create desired items. We test two single tasks with different difficulties IRON and
ENHANCETABLE, and a multiple task MULTIPLE that sample the goal at random.

18

Table 3: Formulas in MINECRAFT environment.
Inventory Action Preconditions

Effects

wood pickup
at_wood = 1
wood+ 1

stone pickup
at_stone = 1
stone+ 1

iron pickup
at_iron = 1 stone_pickaxe ≥ 1
iron+ 1

gem pickup
at_gem = 1 iron_pickaxe ≥ 1
gem+ 1

wool pickup
at_sheep = 1 scissors ≥ 1
wool+ 1

stick make1
at_workbench = 1
stick+ 1 wood− 1

stone_pickaxe make1
at_toolshed = 1
stone_pickaxe+ 1 stone− 3 stick− 2

iron_pickaxe make2
at_toolshed = 1
iron_pickaxe+ 1 iron− 3 stick− 2

iscissors make2
at_workbench = 1
scissors+ 1 iron− 2

paper make3
at_workbench = 1 scissors ≥ 1
paper− 1 wood− 1

bed make3
at_toolshed = 1
bed+ 1 wood− 3 wool− 3

jukebox make4
at_workbench = 1
jukebox+ 1 wood− 3 gem− 1

enhance_table make4
at_toolshed = 1
enhance_table+ 1 stone− 1 paper− 2 gem− 1

19

	Introduction
	Related Work
	Problem Formulation
	Integration of MDP in DRL and Planning with Critical Action
	Method
	Induction Module
	Training Module

	Experiments
	Baselines
	Environments & Tasks
	Results
	Generalizability
	Ablation Study
	Action-Effect Linkage
	Symbolic Regression

	Discussions
	Preliminary Definition
	Markov Decision Process
	Planning Domain Definition Language

	Implementation Detail
	Algorithm in Extracting Action-Effect Linkages
	Genetic Programming
	Decision Tree Method
	Proximal Policy Optimization
	Reward Function

	Test Environments
	Switch
	Doorkey
	Minecraft

